martes, 9 de febrero de 2010

InN-Indium Nitride


Band structure and carrier concentration

Wurtzite(hexagonal) crystal  structure   Remarks
Energy gaps,    Eg 1.970 eV  300 K
    1.9-2.05 eV 300 K 
    2.05 (1) eV  300K; absorption edge
    2.11   eV  78 K
    1.89     eV RT
Conduction band

Energy separation between   M-L valleys degeneracy  6 eV  300 K  
Energy separation between   Γ valley and A valleys  0.7÷ 2.7eV  300 K  
Energy separation between   A valley degeneracy 1 eV  300 K  
Energy separation between   Γ valley and Γ1 valleys  1.1÷ 2.6eV  300 K  
Energy separation between   Γ1 valley degeneracy 1 eV  300 K

Valence band
Energy of crystal-field splitting Ecr   0.017 eV 300 K  
Effective conduction band density of states  9 x 1017 cm-3 300 K 
Effective valence band density of states 5.3 x 1019 cm-3 300 K


InN, Wurtzite. Band structure. Important minima of the conduction band and maxima of the valence band. This splitting results from spin-orbit interaction and from crystal symmetry.
  300K;
    Eg = 1.9 - 2.05 eV;       EΓ1 = 3.0 - 4.5 eV;
    EM-L = 4.8 - 5.8 eV;   EA = 2.6 - 4.7 eV;
    Eso = 0.003 eV;        Ecr = 0.017 eV



InN, Wurtzite. Band structure. Important minima of the conduction band and maxima of the valence band. This splitting results from spin-orbit interaction and from crystal symmetry.
  300K;
    Eg = 1.9 - 2.05 eV;       EΓ1 = 3.0 - 4.5 eV;
    EM-L = 4.8 - 5.8 eV;   EA = 2.6 - 4.7 eV;
    Eso = 0.003 eV;        Ecr = 0.017 eV
For details see
Christensen & Gorczyca (1994), Jenkins (1994), Yeo et al. (1998), Pugh et al. (1999)
InN, Wurtzite. Band structure calculated with an empirical pseudopotential method
The band structure shows a direct gap at Γ, closely similar to that of GaN.
Foley &Tansley (1986)
Brillouin zone of the hexagonal lattice.


Brillouin zone for wurtzite crystal.


Rectangular coordinates for hexagonal crystal





Temperature Dependences

Temperature dependence of energy gap:

Varshni expression:
  Eg = Eg(0) - 2.45 x 10-4 x T2/(T + 624)
  Eg(300K) = 1.970 eV
  (eV)   Guo & Yoshida (1994),
Teisseyre al. (1994)

  see also
 
Osamura et al. (1975)
Bose-Einstein expression:    
Eg = Eg(0) - 4.39 x 10-2 x 2/(exp(466/T) - 1)   (eV)  
0 < T < 300 K, where T is temperature in degrees K.

InN, Wurtzite. The temperature dependences band gap. Broken line represents approximation (see above Varshni expression of Temperature dependence of energy gap ) with Eg (0) = 1.994 eV.
Solid line represents approximation (see above Bose-Einstein expression of Temperature dependence of energy gap ) with Eg(0) = 1.994 eV
Guo & Yoshida (1994)



Intrinsic carrier concentration:

ni = (Nc·Nv)1/2exp(-Eg/(2kBT))
InN, Wurtzite. The temperature dependences of the intrinsic carrier concentration calculated for Eg magnitudes interval 1.9 ÷ 2.05 eV
Zubrilov (2001)


Effective density of states in the conduction band Nc

Wurtzite InN
Nc ~= 4.82 x 1015 · (mΓ/m0)3/2T3/2 (cm-3) ~= 1.76 x 1014 x T3/2 (cm-3)

Effective density of states in the valence band Nv

Wurtzite InN
Nv = 1016 x T3/2 (cm-3)




Dependence on Hydrostatic Pressure

Wurtzite InN
Eg = Eg(0) + 3.3 x 10-2P        (eV)
where P is pressure in GPa.
Christensen & Gorczyca (1994), Perlin et al. (1997).




Band Discontinuities at Heterointerfaces

Wurtzite InN
InN/AlN(0001) Referens
Conduction band discontinuity ΔEc = 2.7 eV Martin et al. (1996),
see also
Wei & Zunger (1996)
Valence band discontinuity ΔEv = 1.8 eV
InN/GaN
Conduction band discontinuity ΔEc = 0.45 eV Martin et al. (1996)
Valence band discontinuity ΔEv = 1.05 eV



Effective Masses and Density of States:

Electrons

For wurtzite crystal structure the surfaces of equal energy in Γ valley should be ellipsoids, but effective masses in z-direction and perpendicular directions are estimated to be approximately the same:
Wurtzite InN Remarks Referens
Effective electron mass me 0.11mo 300 K Lambrecht & Segall (1993)
0.12mo Calculated effective electron mass Foley & Tansley (1986)
0.11mo 300 K, plasma edge Tyagai et al. (1977)

Holes

Wurtzite InN Remarks Referens
Effective hole masses (heavy)mh 1.63 mo 300 K Xu & Ching (1993),
Yeo et al. (1998),
Pugh et al. (1999)
0.5 mo calculated Foley & Tansley (1986)
Effective hole masses (light) mlp 0.27 mo 300 K Xu & Ching (1993),
Yeo et al. (1998),
Pugh et al. (1999)
0.17 mo calculated Foley & Tansley (1986)
Effective hole masses (split-off band) ms 0.65 mo 300 K Xu & Ching (1993),
Yeo et al. (1998),
Pugh et al. (1999)
Effective mass of density of state mv 1.65 mo 300 K Xu & Ching (1993),
Yeo et al. (1998),
Pugh et al. (1999)

Donors and Acceptors

Wurtzite InN

Ionization energies of Shallow Donors
  Native defect level VN
<40-50 eV
Tansley & Egan (1992); Jenkins & Dow (1989)
InN, Wurtzite. Level positions in the forbidden gap of InN.
I - experimental data that fall into five groups A-E.
II - the calculated energies of point defects

Tansley & Egan (1992)

Jorge L. Polentino U.
EES

http://www.ioffe.ru/SVA/NSM/Semicond/InN/bandstr.html


Connect to the next generation of MSN Messenger  Get it now!

No hay comentarios:

Publicar un comentario