lunes, 15 de febrero de 2010

nitride semiconductor laser device


The successful fabrication of light emitting diodes and semiconductor lasers from gallium nitride (GaN) and related wide bandgap nitrides has prompted considerable research into the growth and development of these compounds. Currently, the most common means for deposition of GaN by chemical vapor deposition (CVD) requires large excesses of ammonia and temperatures exceeding 1000°C. Meanwhile, alternative means of deposition using other azide-containing compounds have proven to be unsuccessful because the organic groups present in these compounds incorporate undesirable carbon compounds. Still, alternative synthetic methods based on single source molecular precursors that incorporate Ga—N bonds and labile, preferably, non-organic leaving groups offer the potential of significant improvements in film quality and growth process: lower deposition temperature, elimination of the inefficient use of ammonia, reduction in nitrogen and carbon contamination, much enhanced doping capabilities, etc. Consequently, optimal precursor compounds, providing a facile decomposition pathway leading to the desirable material and offering sufficient volatility at room temperature to undergo CVD or molecular beam epitaxy (MBE), are desirable.
Invention Description
Accordingly, researchers at Arizona State University have identified novel compounds which serve as single source precursors for the deposition of gallium nitride on thin films. Likewise, these researchers have developed a means to synthesize and a method to use single source precursor compounds which allow the deposition of GaN at low temperatures and allow stoichiometric deposition of GaN onto thin films.
SUGGESTED USES
• Light Emitting Diode Fabrication
• Semiconductor Fabrication (e.g. Semiconductor Lasers)
• Preparation of Thin Films and Bulk Powder
ADVANTAGES
• Lower Deposition Temperature – sufficiently volatile at room temperature for CVD and MBE
• Eliminates Inefficient Use of Ammonia
• Reduction in Nitrogen Vacancies and Carbon Contamination – does not contain heavy organic groups, which invariably introduce carbon contamination during film growth; does not contain N—H bonds, which promote loss of nitrogen
• Improved Decomposition Reactions – yields pure GaN heterostructures and nanostructures of unusual morphologies and microstructure
• Allows Standard Methods of Analysis


Marcos Pinto Dderlee
C.I. 17862728

electronica del estado solido

No hay comentarios:

Publicar un comentario